21 research outputs found

    Influência da composição na mistura de pós de alumínio e ferro na formação de revestimentos de alumineto de ferro depositados por aspersão térmica a chama

    No full text
    Nos últimos anos, os aluminetos de ferro (FeAl) têm atraído considerável atenção devido ao seu potencial para aplicações estruturais em elevadas temperaturas, seja por serem materiais intermetálicos de baixo custo (ferro e alumínio são metais abundantes e produzidos em larga escala), com uma densidade relativamente baixa (5,5 g/cm3), elevados pontos de fusão, e excelente resistência à corroção em atmosferas oxidantes e sulfetantes, seja por possuírem boas propriedades mecânicas e estabilidade química em altas temperaturas. O presente trabalho objetivou o estudo da formação de revestimentos de Fe-Al depositados por aspersão térmica a chama (flame spray), por meio de uma mistura de pós elementares de ferro e alumínio, em três proporções diferentes (Fe-20 wt.%Al, Fe - 25 wt.% Al e Fe - 30 wt%Al), com ou sem refusão posterior, e com ou sem base de níquel. A caracterização de revestimentos foi realizada por meio de microscopia óptica, microscopia de varredura, difração de raios X, ensaios de microdureza e adesão por tração. Apesar de ter havido grande oxidação dos pós, foi possível obter a síntese de FeAl2, FeAl e FeAl3. A base de níquel auxiliou a obtenção de revestimentos mais aderentes, para baixos teores de alumínio. A refusão posterior potencializou a oxidação dos compostos, aumentando com isso a porosidade e prejudicando a aderência. Todavia, o efeito combinado da base de Ni e da refusão manual possibilitou tanto o aumento de dureza como de aderência do revestimento no substratoIn last years, iron aluminides have drawn considerable attention due to their potential for structural applications in elevated temperatures, being a low cost intermetallic compound (iron and aluminum are abundant metals, extracted in large scale), with a relatively low density (5.5 g/cm3), high melting points, and outstanding corrosion resitant in oxidizing and sulfidizing environments, and also providing excellent mechanical properties and chemical stability sprayed Fe-Al coating, using flame spray, with three different feed mistures of elemental Fe and Al powders (Fe-20%wt. Al; Fe-25%wt. Al; and Fe-30%wt. Al), with and without posterior remelting and the application of a Ni bond coat. The posterior characterization was leaded through optical and scanning electron microscopy, x-ray diffraction, Vickers microhardness and adhesion. Despite the great feed powder oxidation, the synthesis of FeAl2, FeAl e FeAl3 was reached. The nickel bond coat provided more adherent coating for lower aluminum percentage. The posterior remelting favoured oxidation of the compounds, increasing thus porosity and harming adhesion. However, the combined effect of the Ni bond coat and manual remelting was responsible for increasing both coating hardness and adhesion to the substrat

    Utilization of teflon and aluminum oxide for wheel cleaning in Minimum Quantity Lubrication (MQL) grinding

    No full text
    Researches concerning cooling-lubrication optimization in grinding have been conducted to contribute to a more sustainable process. An alternative to flood coolant is minimum quantity lubrication (MQL), which spray oil droplets in a compressed air jet. However, problems related to wheel cleaning were reported, due to wheel loading by a mixture of chips and oil, resulting in worsening of surface quality. This work aims to evaluate the viability of Teflon and aluminum oxide for wheel cleaning, compared to MQL without cleaning and MQL with cleaning by compressed air, through the following output variables: surface roughness, roundness, wheel wear, grinding power and acoustic emission. Vickers microhardness measurements and optical microscopy were also carried out. The results showed that both materials were efficient in cleaning the wheel, compared to MQL without cleaning, but not as satisfactory as compressed air. Much work is to be done in order to select the right material for wheel cleaning

    Análise do desgaste em ferramentas de diamantes nacionais

    No full text
    Três tipos de diamantes foram observados neste trabalho, para determinar qual apresenta a melhor relação entre desgaste e tempo de vida de um dressador de ponta única. A metodologia empregou o dressamento de um rebolo de óxido de alumíno e, a cada vinte passes, com avanço da profundidade de dressagem de 40 μm por passe, registrou uma imagem da ponta da ferramenta em um estereoscópio. O dressador foi então recolocado na retificadora para a realização de novas dressagens até o fim de vida do diamante. O critério para o fim do ensaio foi o faiscamento gerado pelo contato do rebolo com a base do dressador. Foram realizados três ensaios para cada tipo de diamante. O Mato Grosso apresentou os maiores desgastes de área, e o Brasil Extra, o menor. O CVD nacional teve desempenho parecido com o do Brasil Extra, mas com tempo maior de dressagem nos ensaios. Ou seja, apresentou baixo desgaste e durabilidade maior

    Evaluation of different methods of cooling-lubrication in cylindrical grinding of advanced ceramic dip

    No full text
    The current work presents a study of alternative methods of cooling-lubrication for the external plunge grinding of advanced ceramics using diamond wheels. These two alternative methods, which are intended to reduce cutting fluid expenses, are commonly referred to as the optimized cooling-lubrication method and minimal quantity of lubrication (MQL). The techniques were evaluated by process monitoring and by the assessment of output variables such as tangential cutting force, G ratio, roundness errors, surface roughness, microstructure and residual stresses measured by X-ray diffraction. The obtained results showed that the two proposed techniques can replace the conventional cooling-lubrication method, i.e., flood coolant. In particular, optimized cooling-lubrication method reduced wheel wear and produced workpieces with the best geometric and dimensional finishes, while MQL significantly reduced the amount of fluid employed in the process without harming the workpiece quality.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Utilization of Minimum Quantity Lubrication (MQL) with Water in CBN Grinding of Steel

    Get PDF
    The use of cutting fluids is fundamental to machining processes, mainly when it comes to high heat generation, which is the case of grinding. Thus, lubrication and cooling provided by cutting fluids improve the final quality of the workpiece. However, cutting fluid usage provide some drawbacks concerning environmental, costs and health issues. Therefore, new methods for application and optimization of cutting fluids are being researched aiming to reduce the amount of fluid used, as well as the minimization of cutting fluid hazards. The present study analyzes the behavior of a recently proposed optimization method, up to now only tested in turning, which consists of adding water to minimum quantity lubrication (MQL). Three different proportions were tested in this study: 1/1, 1/3 and 1/5 parts of oil per parts of water. The following output variables were evaluated: surface roughness, roundness errors, grinding power and diametric wheel wear. Also, optical microscopy and microhardness measurements were conducted, in order to detect burns and surface alterations. The obtained results were also compared to conventional (flood coolant) cooling-lubrication and traditional MQL (without water). MQL with water (1/5) presented better results of surface roughness and roundness errors, when compared to traditional MQL, and the results are very close to when using flood coolant. For grinding power and wheel wear, the results for MQL with water (1/5) were the best among the tested conditions.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Utilization of minimum quantity lubrication (MQL) with water in CBN grinding of steel

    No full text
    The use of cutting fluids is fundamental to machining processes, mainly when it comes to high heat generation, which is the case of grinding. Thus, lubrication and cooling provided by cutting fluids improve the final quality of the workpiece. However, cutting fluid usage provide some drawbacks concerning environmental, costs and health issues. Therefore, new methods for application and optimization of cutting fluids are being researched aiming to reduce the amount of fluid used, as well as the minimization of cutting fluid hazards. The present study analyzes the behavior of a recently proposed optimization method, up to now only tested in turning, which consists of adding water to minimum quantity lubrication (MQL). Three different proportions were tested in this study: 1/1, 1/3 and 1/5 parts of oil per parts of water. The following output variables were evaluated: surface roughness, roundness errors, grinding power and diametric wheel wear. Also, optical microscopy and microhardness measurements were conducted, in order to detect burns and surface alterations. The obtained results were also compared to conventional (flood coolant) cooling-lubrication and traditional MQL (without water). MQL with water (1/5) presented better results of surface roughness and roundness errors, when compared to traditional MQL, and the results are very close to when using flood coolant. For grinding power and wheel wear, the results for MQL with water (1/5) were the best among the tested conditions1718896FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPNão te
    corecore